A Comparative Study of Brute Force and
Decrease and Conquer Algorithm for Mastermind
Puzzle Codebreaking

Felicia Sutandijo - 13520050
Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
E-mail: FeliciaSutandijo@gmail.com

Abstract—Mastermind is a codebreaking board game
featuring codes made of six different colours. To win, the
codebreaker needs to guess the exact code that has been
determined by the codemaker with the help of black and white
pegs indicating correct and close guesses. With 1,296 possible
solutions and only eight to twelve chances to guess, it is almost
impossible to win the game by luck. Therefore, this paper aims to
compare the brute force and decrease and conquer algorithms
designed to solve the Mastermind puzzle. The two algorithms will
be evaluated by execution time, the average number of guesses,
and the maximum number of guesses against all possible cases.

Keywords—Mastermind; brute force; decrease and conquer

I. INTRODUCTION

Mastermind was invented by Mordecai Meirowitz in the
year of 1970. The game entails logical thinking as one needs to
guess a certain arrangement of coloured pegs through a series
of deductions. A Mastermind game consists of a decoding
board, code pegs of six different colours, and key pegs of two
different colours (usually black and white) [1].

Fig. 1. A Mastermind Game

With 1,296 possible solutions in a classic Mastermind
game, it is therefore impossible to guarantee a win by luck.
Fortunately, several strategies could be implemented to break
the code, two of which will be explored in this paper.
Examples of these strategies include guessing systematically,
guessing randomly, aiming to determine the set of colours used
in the code first, or focusing on narrowing down the options of
possible solutions [2], [3].

In this paper, two algorithms will be compared. The first is
a brute force algorithm with initial steps dedicated to
determining the set of colours used in the solution code, and
the second is a decrease and conquer algorithm focusing on
narrowing down the options of possible solutions. Both
algorithms will be measured by execution time, average
guesses, and maximum (worst case scenario) guesses.

Il. THEORETICAL FRAMEWORK

A. Rules of the Mastermind Game

In this paper, the six different colours of code pegs will be
represented by “1”, <27, 3, “4”, “5”, and “6”. The solution
code has a length of four and is randomly generated. Blanks are
not allowed, but repetitions of colour are allowed. For each
round, the game will give feedback on the number of “black
pegs” for exact matches (pegs that are correct in both colour
and position) and the number of “white pegs” for close matches
(pegs that are correct in colour but is wrongly positioned).

The rules of a classic Mastermind game are as follows.

To play, the codemaker first decides on a sequence of four
code pegs, called the solution code. These code pegs come in
six different colours and the codemaker is allowed to make any
combinations of the six colours. Since the focus of this paper is
codebreaking, the role of the codemaker will be carried out by
a computer through random generation.

After the code is set, the codebreaker then attempts to
replicate the code in eight to twelve rounds depending on the
version of the game. With each guess, the codebreaker is given
a hint using the key pegs; a black peg indicating a correct
guess, and a white peg indicating a correct coloured peg, but in
the wrong position.

Makalah 1F2211 Strategi Algoritma, Semester Il Tahun 2021/2022

Armed with the feedback key pegs, the codebreaker can
then make a more informed guess in the next round. The
codebreaker wins if he/she successfully uncovers the solution
code (receiving four black pegs as feedback), and the
codemaker wins if the codebreaker is out of turns [1].

For the purpose of measuring the efficiency of the
algorithms applied, there will be no limit to how many guesses
can be made in the following experiments.

B. Brute Force Algorithm

In computer science, the brute force algorithm is a general
algorithm which can be utilized to solve almost all
computational problems. This algorithm consists of
systematically enumerating all solution candidates and
checking whether each candidate satisfies the problem
statement. Brute force algorithms are usually based on the
problem statement itself or definitions and concepts regarding
the problem [4].

While brute force algorithms are straightforward and easy
to implement, the costs are proportional to the number of
candidates raised. Therefore, problems which have a large set
of possible solutions may require an equally large cost when
brute force is attempted.

C. Heuristic

Brute force algorithms can be sped up by using heuristics.
The word “heuristic” comes from the Greek word “eureka”,
which means to find or to discover [5]. A heuristic is any
approach to problem-solving that employs a practical method
neither guaranteed to be optimal nor proven mathematically but
is sufficient for reaching short-term goals or approximations.
Examples of heuristics are trial and error, rule of thumbs, or
educated guesses [6].

Heuristics are not algorithms. Heuristics apply intuition or
common sense to provide guidelines for an algorithm, which
will limit the number of solution candidates raised. Among
other things, heuristics may be used to prevent algorithms from
exploring solution candidates that have been known to be
impossible as a solution, or it may serve to provide initial
information for the algorithm to work with [5].

D. Decrease and Conquer Algorithm

Decrease and conquer algorithms are algorithms which
attempt to reduce a problem into two smaller sub-problems and
only proceed to compute only one sub-problem. This approach
can be seen as a modification to the more popular divide and
conquer algorithms, which divide a problem into two sub-
problems, processing both, and combining the solutions of each
sub-problem [7].

Decrease and conquer algorithms only have two steps,
which, as the name implies, are decrease and conquer. The first
step, decrease, is when the algorithm reduces a problem into
smaller sub-problems, usually into two sub-problems. The
conquer step is where the algorithm processes only one sub-
problem. There is no “combine” step in the decrease and
conquer algorithm, as there is only one processed sub-problem

[8].

There are three variants of decrease and conquer:

1. Decrease by a constant: a problem is reduced by a
constant in each iteration. Examples include insertion
sort and selection sort.

2. Decrease by a constant factor: a problem is reduced by
a constant factor in each iteration. Examples include
binary search and fake-coin problems.

3. Decrease by a variable size: a problem is reduced by
different amounts in each iteration. Examples include
Euclid’s algorithm and selection by partition.

The algorithm designed in this paper will take the third
variant, decrease by a variable size.

I11. CODEBREAKING USING BRUTE FORCE ALGORITHM

A. Algorithm

Allowing repetition of colours but no blanks, a classic
Mastermind game allows a total of 64 = 1,296 combinations of
solution codes to be played. An obvious strategy for
discovering the randomly generated solution code is to simply
try each one of the 1,296 possible combinations. This is called
the brute force strategy.

With a classic brute force strategy, the best-case scenario is
uncovering the solution code in one guess, while the worst-case
scenario is uncovering the solution code in the 1,296™ guess.
Obviously, trying out 1,296 different combinations is quite
tedious if it were to be done by a human instead of a machine,
not to mention the limit imposed by the game rules if it were to
be played on a real Mastermind board game.

Taking the algorithm one step further, it is possible to use a
heuristic to reduce the number of guesses needed to guarantee a
win. To do so, the algorithm is divided into two steps.

The first six guesses of the algorithm are dedicated to
discovering the colours and the frequency of each colour
making up the solution code. For the first guess, the algorithm
guesses a “1111” and gets feedback on the number of black
pegs. If there are 0 black pegs, then there is no “1” in the
solution code. If there is 1 black peg, then there is one “1” in
the solution code, and so on. For the second guess, the
algorithm guesses a “2222” to determine the number of “2”s in
the solution code. The algorithm continues in this manner until
all components of the solution code have been discovered (the
algorithm has gotten a total of four black pegs in its feedback),
or all six colours have been attempted. The number of white
pegs during this first half of the algorithm will always be zero,
as there will be no “wrongly-positioned” pegs since all pegs are
identical.

The second half of the algorithm involves enumerating all
possible permutations of the four components of the solution
code discovered earlier. The enumeration yields 4! = 24 total
possible combinations to be tested. This is a reasonable number
compared to the 1,296 in a classic brute force attempt. For
combinations with repetition of colours, the list of solution
candidates could be further reduced to exclude duplicates.

Makalah 1F2211 Strategi Algoritma, Semester Il Tahun 2021/2022

In summary, the brute force algorithm used to break the
solution code is as follows:

1. Attempt “1111”, “2222”, and so on until “6666” or
until all four components of the solution code have
been discovered.

2. Enumerate all 24 possible permutations of the
components of the solution code discovered by the
previous step and test them one by one systematically
until the algorithm receives four black pegs.

The resulting algorithm is intuitive and easy-to-understand,
and has a worst-case scenario of 30 guesses, 6 from the first
half and 24 from the second half. It is also worth noting that
this algorithm performs better with codes that have more
repetition of colours since the generated possible permutations
contain more duplicates which could be eliminated.

B. A Documented Example

The following output of a Python program implementation
illustrates the mechanisms of the brute force algorithm.

Fig. 2. Brute Force Example

C. Measured Statistics

The following output of a Python program measures the
execution time, the average number of guesses, and the
maximum (worst-case scenario) number of guesses of the brute
force algorithm against all 1,296 possible solution/answer
codes.

Fig. 3. Brute Force Statistics

Makalah 1F2211 Strategi Algoritma, Semester Il Tahun 2021/2022

IV. CODEBREAKING USING DECREASE AND CONQUER
ALGORITHM

A. Algorithm

The decrease and conquer algorithm starts with a set S of
all 1,296 possible combinations. This list will be the focus of
the algorithm, as each guess will provide information to reduce
the list of possible combinations.

The algorithm starts by picking a random guess from S to
obtain initial information about the solution code. After
feedback is received, the algorithm eliminates all possible
combinations from S which are not consistent with the
feedback received. The elimination process requires an
evaluation of all the remaining possible combinations against
the newly guessed combination and its received feedback.

This process is repeated until S only contains one possible
combination (which is the solution), or when the algorithm
receives feedback of four black pegs, which signifies a win.

In summary, the decrease and conquer algorithm used to
break the solution code is as follows:

1. Create a set S enumerating all
combinations of all solution codes.

1,296 possible

2. Make a random guess from S.

3. Use the feedback received to eliminate from S all
combinations which are not consistent with the
feedback.

4. Repeat from step 2 until there is only one possible
combination of the solution code, or when feedback of
four black pegs is received.

As an example, suppose the algorithm attempts to guess the
solution code “3536”. The following are the steps taken to
uncover the solution code:

1. Set S enumerating all 1,296 possible solutions is
created.

A random guess is picked from S, say “4353”.
Feedback of 0 black pegs and 3 white pegs is received.

4. All possibilities that are inconsistent with the feedback
is eliminated. For example, “1212” is eliminated, since
if the solution was “1212”, the guess “4353” would
have gotten feedback of O black pegs and 0 white pegs,
which is inconsistent with the feedback received
earlier. The remaining candidates in S are now reduced
to only 44 possibilities.

5. Another random guess from the remaining members of
S is chosen, say “3546”.

6. Feedback of 3 black pegs and 0 white pegs is received.

7. S is again reduced to only the possible candidates of
the solution code, evaluated against the last guess
“3536” and its feedback. S now only contains 5
possible candidates, “3544”, “3545”, “3541”, “3542”,
and “3536”.

8. From the five remaining candidates, another random
guess, “3544”, is picked.

9. Feedback of 2 black pegs and 0 white pegs is received.

10. This move leads to the elimination of all but one
candidate in S, leaving only the solution “3536”".

11. The solution is found in a total of 4 attempts, including
the last guess <3536

Considering the large number of initial possible
combinations needed to be generated and kept track of (which
is terribly hard for a human player to replicate), an effort to
modify the algorithm to exclude its first step could be
considered. Without initially enumerating all possibilities, a
player could start by making a random guess. For the next
guesses, the player should then evaluate another random guess
against all the known previous guesses and see if it is
consistent. If it is consistent, the player should make the guess.
If it is not, the player should evaluate another random guess.

B. A Documented Example

The following output of a Python program implementation
illustrates the mechanisms of the decrease and conquer
algorithm.

$

Solution code: 4165

Fig. 4. Decrease and Conquer Example

C. Measured Statistics

The following screenshot of an output of a Python program
measures the execution time, the average number of guesses,

Makalah 1F2211 Strategi Algoritma, Semester Il Tahun 2021/2022

and the maximum (worst-case scenario) number of guesses of
the decrease and conquer algorithm against all 1,296 possible
solution/answer codes.

Fig. 5. Decrease and Conquer Statistics

V. COMPARISONS OF BRUTE FORCE AND DECREASE AND
CONQUER ALGORITHMS

A. Overview

In terms of performance, the brute force and decrease and
conquer algorithms are both measured by the total time needed
to solve all possible 1,296 combinations, average guesses, and
maximum (worst-case scenario) guesses needed to uncover the
solution code. The comparisons are stated in Table I.

TABLE I. COMPARISON OF TWO ALGORITHMS
Algorithms
Brute Force Decrease and Conquer
Total time (s) 0.2082 18.6651
Average guesses 12.8025 4.6597
Worst case 30 8

B. Time

Through this experiment, it can be seen that the decrease
and conquer algorithm requires an average of almost 90 times
more time to win a game than the brute force algorithm.
Although the number of guesses needed for the decrease and
conquer algorithm to determine the solution is considerably
less than the brute force algorithm, it requires a careful
selection of which guesses are still consistent with the previous
guesses in each iteration. Much like in a human being, this
“thinking” process takes time and thus the algorithm proves to
be slower than a more general-approach brute force algorithm.

C. Number of Guesses

Optimized for a lower number of guesses, the decrease and
conquer algorithm guarantees a win just within 8 guesses, with
an average of 4.6597 guesses. On the other hand, brute force
requires 30 guesses to be sure of success, with an average of
12.8025 guesses. Therefore, in a game with a limited number
of guesses allowed, the brute force algorithm is not suitable.

D. Other Factors

The computer and the human mind are two different things.
For a beginner human player, the simplicity of the brute force
algorithm makes it easier to understand and implement in a
game of Mastermind. The player simply needs to follow a
methodical approach without plenty of thinking to be able to
determine the code. On the other hand, the decrease and
conquer algorithm requires a deeper understanding of the game
and careful deliberation each time the player needs to make a
guess. Therefore, a beginner player may find it easier to
initially practice codebreaking with the brute force algorithm,
before moving on to a more advanced decrease and conquer
algorithm.

VI. CONCLUSION

The brute force and decrease and conquer algorithm are
viable strategies to implement in a game of Mastermind, both
with their own trade-offs. The brute force algorithm is well-
suited for games without a maximum number of rounds and
when one has reasons to believe that the solution code contains
repetitions of colours. On the other hand, the decrease and
conquer algorithm guarantees a win in less than eight rounds,
thus is suitable for more complex games with a rule of a certain
maximum number of rounds and for more advanced players.

VIDEO LINK AT YOUTUBE

A video explaining the contents of this paper may be
viewed at https://youtu.be/vhfvBfyIKWM.

GITHUB REPOSITORY

The Python codes used in the experiments in this paper may
be accessed from https://github.com/FelineJTD/Mastermind-
Solver.

Makalah 1F2211 Strategi Algoritma, Semester Il Tahun 2021/2022

https://youtu.be/vhfvBfylKWM
https://github.com/FelineJTD/Mastermind-Solver
https://github.com/FelineJTD/Mastermind-Solver

ACKNOWLEDGMENT

The author is incredibly grateful to Dr. Nur Ulfa Maulidevi,
S.T., M.Sc. for her guidance and lessons throughout the
semester, which insights have been invaluable to the
completion of this project. Also, the author would like to
thank a friend who has evaluated and reviewed the code for
this paper.

REFERENCES

[1] “How to play Mastermind | Official Rules | UltraBoardGames.”
https://www.ultraboardgames.com/mastermind/game-rules.php
(accessed May 23, 2022).

[2] Knuth. Donald, "The Computer as Master Mind" (PDF). “knuth-
mastermind.pdf.” Accessed: May 23, 2022. [Online]. Available:
http://www.cs.uni.edu/~wallingf/teaching/cs3530/resources/knuth-
mastermind.pdf

[3] G. Ville, “An Optimal Mastermind (4,7) Strategy and More Results in
the Expected Case.” arXiv, May 05, 2013. Accessed: May 23, 2022.
[Online]. Available: http://arxiv.org/abs/1305.1010

[4] R. Munir, “Algoritma Brute Force (2022) Bagl.” Accessed: May 23,
2022. [Online]. Auvailable:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-
2022/Algoritma-Brute-Force-(2022)-Bag1.pdf

[5] R. Munir, “Algoritma Brute Force (2022) Bag2.” Accessed: May 23,
2022. [Online]. Auvailable:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-
2022/Algoritma-Brute-Force-(2022)-Bag2.pdf

[6] “Heuristics - Definition and examples — Conceptually.”
https://conceptually.org/concepts/heuristics (accessed May 23, 2022).

[7] R. Munir, “Algoritma Decrease and Conquer.” Accessed: May 23, 2002.

[Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Decrease-and-Conquer-2021-Bagian1.pdf
[8] “Decrease and Conquer - GeeksforGeeks.”
https://iwww.geeksforgeeks.org/decrease-and-conquer/ (accessed May
23,2022).
PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Mei 2022

fl v =

Felicia Sutandijo
13520050

Makalah 1F2211 Strategi Algoritma, Semester Il Tahun 2021/2022

https://en.wikipedia.org/wiki/Donald_Knuth
http://www.cs.uni.edu/~wallingf/teaching/cs3530/resources/knuth-mastermind.pdf

